

Bridging the gaps in bioinformatics/Genome assembly

Assembling influenza genomes with IRMA

Marta Maria Ciucani, MSc, PhD Bioinformatician Influenza group Statens Serum Institut

18/05/2023

Intended Learning Outcomes (ILOs)

Understanding the genomic structure of influenza virus

Summarize key challenges related to sequencing influenza genomes

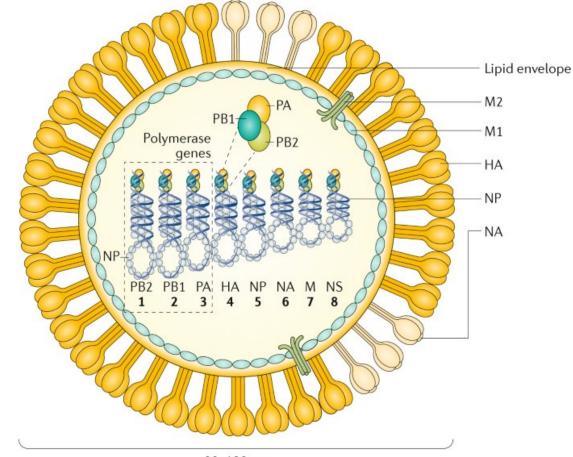
03

Use a published pipeline (IRMA) for generating a viral genome: intro and usage 04

Understand the result of the assembly (I.e. the output-files generated by the pipeline)

05

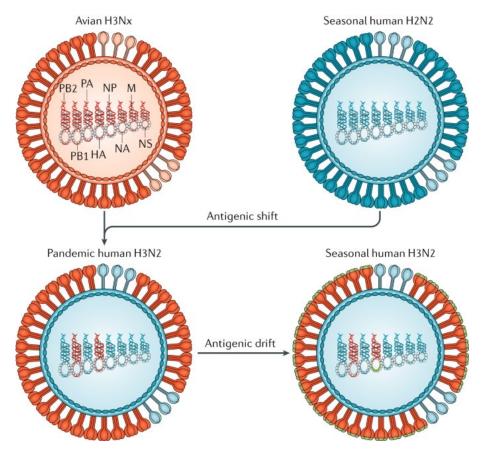
Know how to modify parameters to adapt the analysis to userspecific needs


Influenza genomes

The influenza virus is an RNA virus with a segmented genome consisting of eight negative-sense single-stranded RNA segments.

Each RNA segment codes for at least one protein, with some segments encoding multiple proteins through alternative splicing.

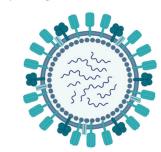
The genome segments are enclosed within a protein shell, or nucleocapsid, and surrounded by a lipid envelope containing two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are responsible for the virus's antigenicity and host specificity.



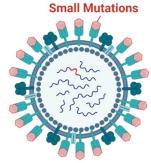
80-120 nm

Influenza genomes

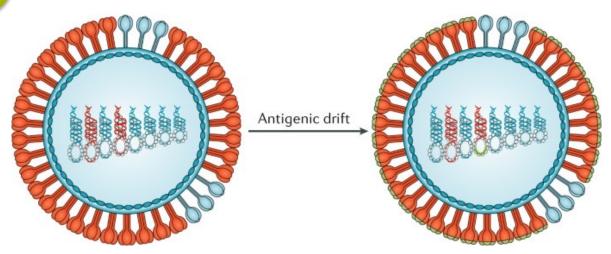
Influenza viruses undergo frequent genetic changes, both through <u>antigenic drift</u> and <u>antigenic shift</u>.



Antigenic drift


Gradual accumulation of point mutations in the genes encoding the HA and NA proteins, which results in minor changes to the virus's surface antigens (HA and NA).

- HA and NA are recognized by the immune system and can trigger an immune response (including producing antibodies to fight infection).
- The small genetic changes usually produce viruses that are closely related to one another, which can be illustrated by their location close together on a phylogenetic tree.

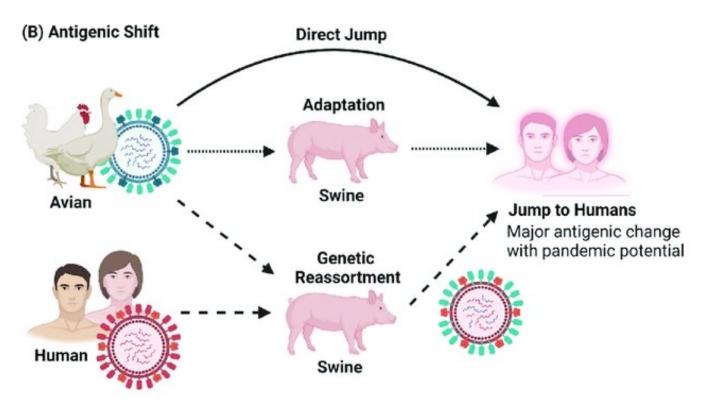

(A) Antigenic Drift

Accumulation of Mutations

Minor antigenic change with epidemic potential

Antigenic drift

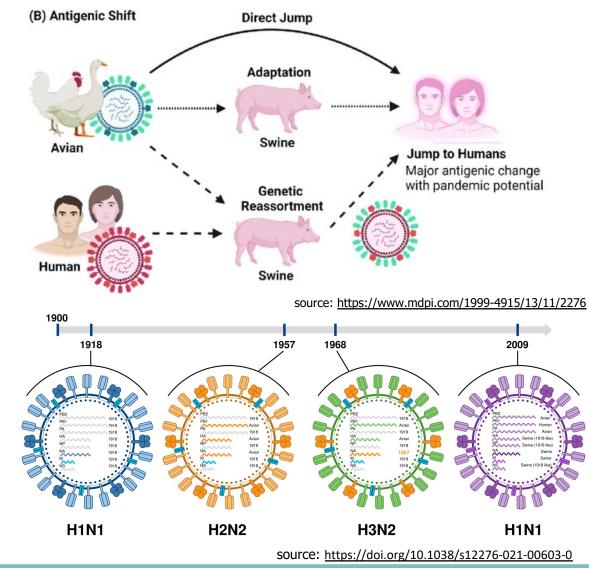
Over time mutations lead to viruses that are antigenically different, meaning a person's antibodies bind differently or not at all to the virus, resulting in a loss or reduction in protection against that particular flu virus.


Can cause multiple flu infection over our life time

It's the reason why we annually change the flu vaccine composition.

Antigenic shift

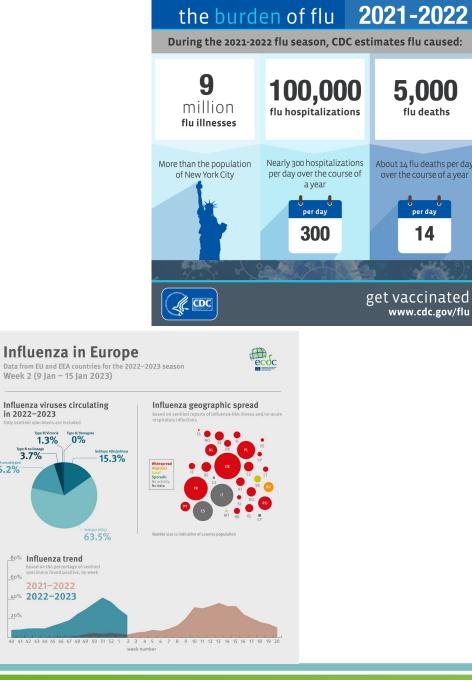
Occurs when two different influenza viruses infect the same host cell and exchange genome segments, resulting in a novel virus with new surface antigens.



Antigenic shift

Results in major antigenic change via direct jump, adaptation and genetic reassortment.

Antigenic shift is responsible for the emergence of pandemic influenza strains, such as the H1N1 strain that caused the 1918 Spanish flu pandemic and the H5N1 strain that has caused outbreaks in birds and humans in recent years.



Genome size and structure: The genome of SARS-CoV-2 is a single-stranded RNA molecule, about 30,000 nucleotides long, which encodes for 29 proteins. In contrast, the influenza virus genome is composed of eight segments of single-stranded RNA, encoding for a total of 11 proteins.

Mutation rate: RNA viruses like SARS-CoV-2 and influenza viruses are known for their high mutation rates, which allow them to adapt quickly to changing environments. However, the mutation rate of SARS-CoV-2 is lower than that of influenza viruses.

Antigenic variation: Influenza viruses are notorious for their ability to undergo rapid antigenic drift, which allows them to evade the host immune system and cause seasonal epidemics. SARS-CoV-2 also exhibits some degree of antigenic variation, but it appears to be less pronounced than that of influenza viruses.

Sars-Cov2 VS Influenza

3.7%

16.2%

Background

Influenza viruses cause a significant disease burden as a result of seasonal activity and outbreaks

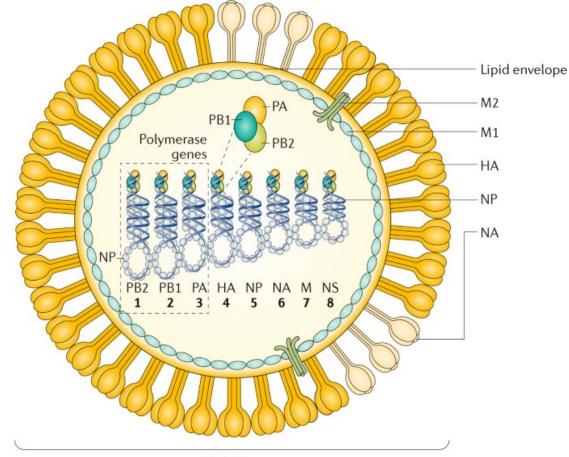
Disease severity and fast mutation rate -> large global surveillance network is required

The high level of mutation inherent in influenza virus reproduction leads to antigenic drift within gene segments while reassortment of segments causes antigenic shift which can cause outbreaks of infection

Background

Rapid expansion in surveillance efforts for zoonotic viruses and use of NGS technologies.

NGS offers advantages for surveillance and outbreak investigation in terms of <u>speed</u> and <u>resolution</u> of sequence differences Welcome to MiSeq Control Software



Background

Reference based NGS assembly programs do not perform well with the influenza segmented genome.

These programs discard read sequences from assembly that have too many mismatches or insertions/deletions (indels)

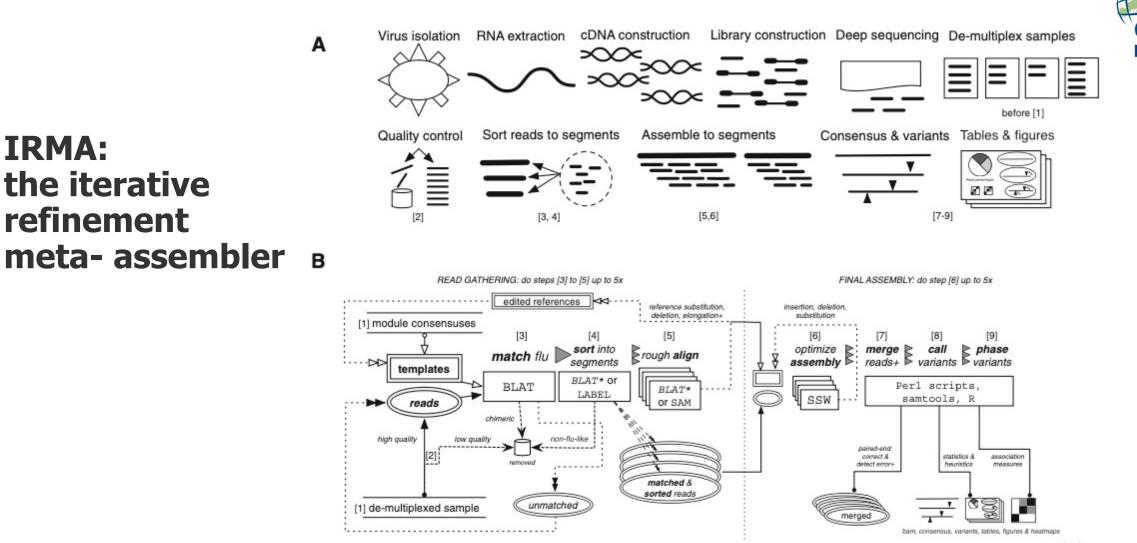
These approaches minimise coverage and prevent complete assembly

80-120 nm

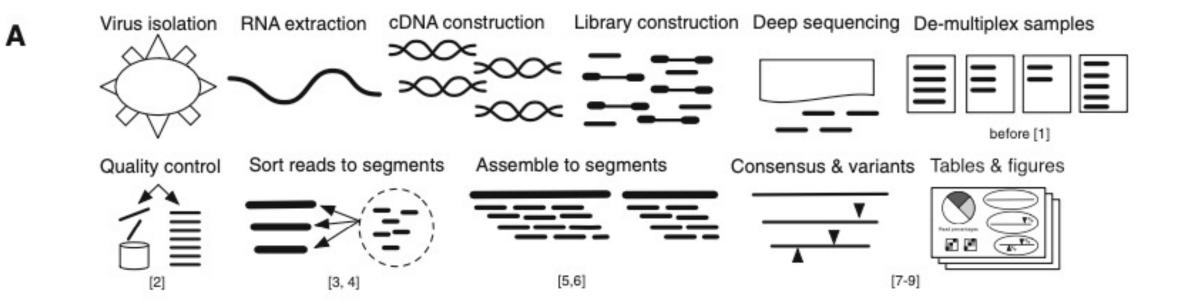
Shepard et al. BMC Genomics (2016) 17:708 DOI 10.1186/s12864-016-3030-6

BMC Genomics

METHODOLOGY ARTICLE



Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler


Samuel S. Shepard^{1*}, Sarah Meno¹, Justin Bahl², Malania M. Wilson^{1,3}, John Barnes¹ and Elizabeth Neuhaus^{1*}

Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX, USA.
Battelle Memorial Research Institute, 1600 Clifton Road, Atlanta, GA 30329, USA.

+optional *faster option

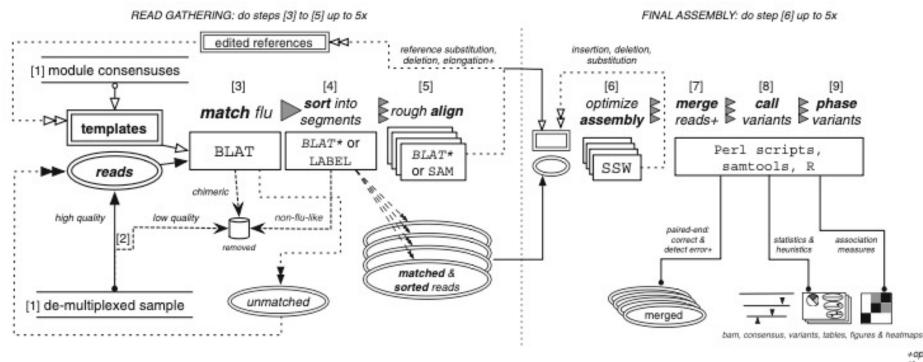
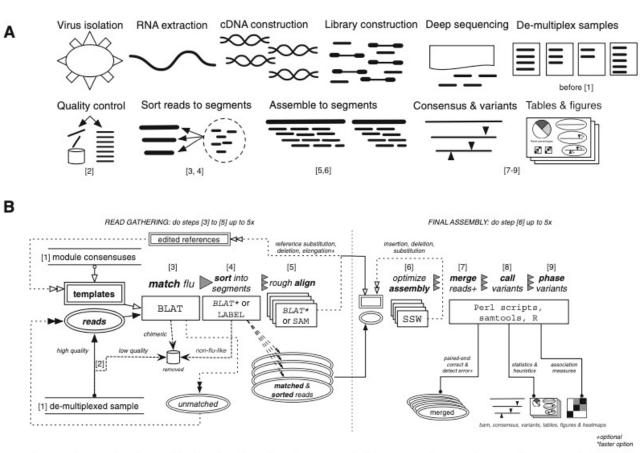


Diagram of IRMA workflow

в

≠optional *faster option

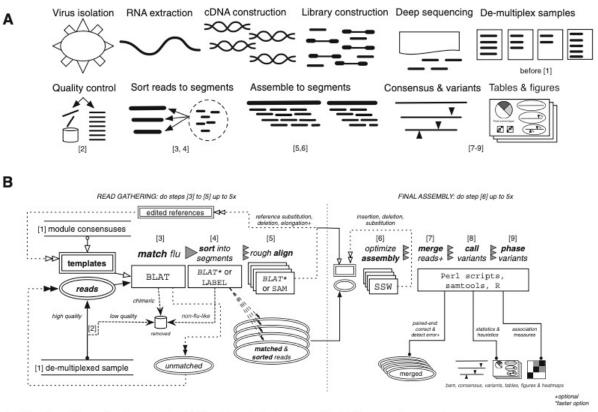


IRMA: the iterative refinement metaassembler

Developed as a flexible approach that more thoroughly <u>addresses</u> <u>viral diversity</u>

Provides a comprehensive solution to address each aspect of NGS assembly, as it applies to RNA virus evolution, in a <u>flexible and robust</u> manner

Used to process genome sequence data derived from the <u>large volume</u> <u>of surveillance</u> specimens characterized at CDC


IRMA: the iterative refinement meta- assembler

Used successfully to identify <u>low</u> <u>frequency variants</u>

IRMA applies an <u>iterative refinement</u> process that improves assembly accuracy

Uses a hierarchical approach that can efficiently assemble reads across a range of coverage depths and phased minor variants

Provides a <u>comprehensive</u> set of analysis <u>outputs</u>.

Install IRMA

Warning!! IRMA was designed for use with Linux and Mac OS, not Windows.

IRMA requires at least Perl version 5 and BASH version 3, which is standard on most Linux & Mac OS X systems.

R must be available on any computer which runs IRMA processes.

Download: get the latest version of IRMA & LABEL and unzip the archive in the desired <install_path>.

More instruction at this link: <u>https://wonder.cdc.gov/amd/flu/irma/install.html</u>

Dependencies

BLAT for the matching step of the flu reads

LABEL (for sorting reads into segments), which also packages certain resources used by IRMA:

- Sequence Alignment and Modeling System (SAM) for both the rough align and sort steps
- Shogun Toolbox, which is an essential part of LABEL, is used in the sort step

SSW (modification of Smith-Waterman algorithm) for the final assembly step

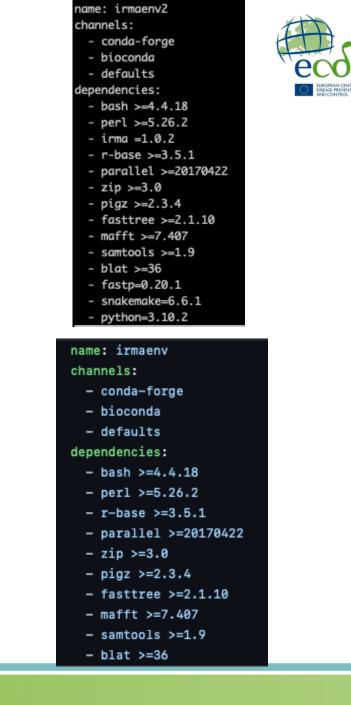
samtools for BAM-SAM conversion as well as BAM sorting and indexing

How to install IRMA

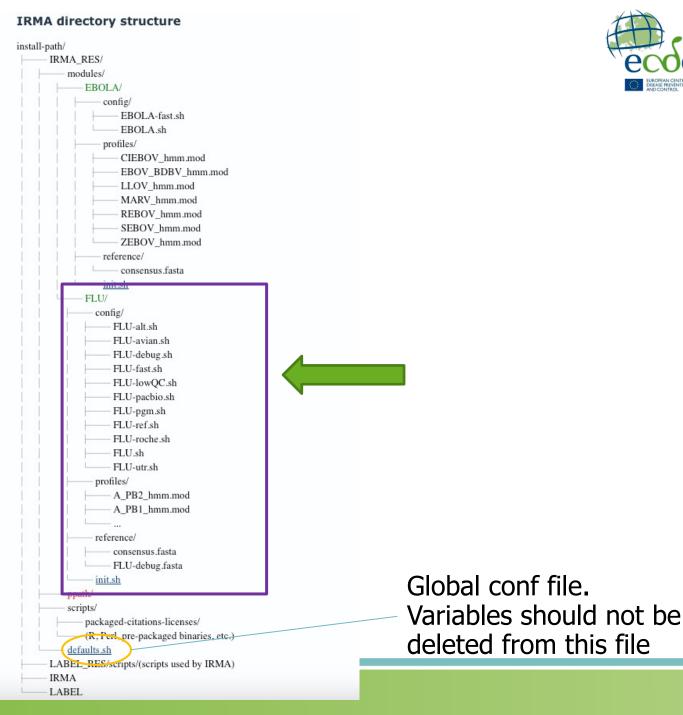
Or, you can simply use a conda environment! So make sure you install conda or miniconda

Install Conda

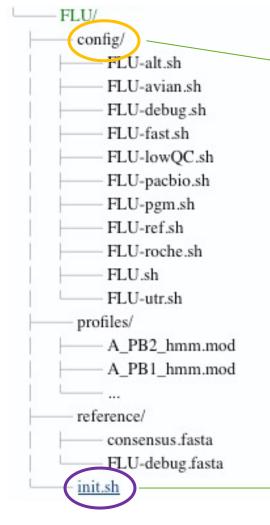
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh

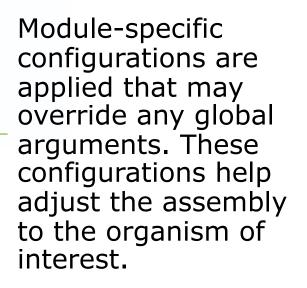

bash miniconda.sh -b -p \$HOME/miniconda

And then:


Download repo git clone https://github.com/peterk87/irma.git cd irma # create IRMA conda env conda env create --file=conda_env.yaml

activate IRMA conda env


conda activate irmaenv


Irma directory

Irma directory

run-specific named configuration files can be applied to specialize the assembly for different situations.

### PERFORMANCE ### GRID_ON=0	# grid computation on [1,0] for on or c	5ff							
GRID_ON=0 GRID_PATH=""	# grid computation on [1,0] for on or off # grid path, defaults to the IRMA_RES path if left empty string, do not include quotes for tilde prefix								
SINGLE_LOCAL_PROC=16	# gria path, defaults to the IMMA_KES path if left empty string, do not include quotes for tilde prefix # local maximum processes								
DOUBLE_LOCAL_PROC=8	<pre># local maximum processes (double this number)</pre>								
ALLOW_TMP=1	# if GRID_ON=0, try to use /tmp for working directory								
TMP=/tmp	# the scratch/tmpfs for working on the assemblies								
### REFERENCE ###									
MIN_FA=1	<pre># no alternative reference [01]</pre>								
MIN_CA=20	# minimum count for alternative finished assembly								
SKIP_E=1	# skip reference elongation								
REF_SET=\$DEF_SET	# Same as the "consensus.fasta" in the reference folder for the module.								
MIN_CONS_SUPPORT=100	<pre># minimum allele coverage depth to call</pre>	plurality consensus, otherwise calls "N".							
### READ GATHERING ###									
MAX_ROUNDS=5	# round of read gathering								
USE_MEDIAN=1	# use the median quality or the	e average [1,0]							
QUAL_THRESHOLD=30	# minimum read statistic								
MIN_LEN=125	# minimum read length								
ENFORCE_CLIPPED_LENGTH=	=0 # Off. Reads are filtered for m	ninimum length post adapter trimming.							
## MATCH STEP									
MATCH_PROC=20	# grid maximum processes for the MATCH								
MATCH_PROG="BLAT"	# match (all or any match) program [BLAT]								
MIN_RP=15	# minimum read pattern count to continue								
MIN_RC=15	<pre># minimum read count to continue</pre>								
## SORT STEP									
SORT_PROG="BLAT"	# [LABEL,BLAT]								
SORT_PROC=80	# [LABEL,BLAT] # currently not used								
NONSEGMENTED=0	# currencey not used								
	o gene segment lineages into gene for pri	mary/secondary sorting.							
SORT_GROUPS="PB2, PB1, PA									
	PB2:2,A_PB2:1,A_PB1:2,PA:3,HA:4,NP:5,NA:	6,M:7,NS:8"							
# LABEL									
# LABEL SECONDARY_SORT=1		# LABEL sorting fast-mode							
LABEL_MODULE="irma-FLU"		# IABEL SOFTING TOST-mode # if LABEL SECONDARY SORT is 0, use LABEL_MODULE							
	5="irma-FLU-HA,irma-FLU-NA:irma-FLU-OG"	# otherwise, search for primary classification from BLAT and use the modules accordingly							
GENE_GROUP="HA,NA:OG"		# specify primary sorting gene groups for BLAT							
## ALIGN STEP ##									
ALIGN_PROG="SAM"	<pre># rough assembly / alignment to working</pre>	reference [SAM.BLAT]							
ALIGN_PROC=20	# grid maximum processes for the rough								
### FINISHING ASSEMBLY	###								
ASSEM_PROG="SSW"	# assembly program [SSW]								
ASSEM_PROC=20	# assembly program [ssm] # grid maximum processes for assembly								
INS_T=0.25	# grid maximum processes for assembly # minimum frquenncy threshold for insertion refinement								
DEL_T=0.60	# minimum frequency threshold for deletion refinement								
MIN_AMBIG=0.20	# minimum called SNV frequency for mixe								

keep an eye on the parameters that you would like to change and adapt to your needs!

More info here: https://wonder.cdc.gov/amd/flu/irma/configuration.html

init.sh

file

How to run IRMA

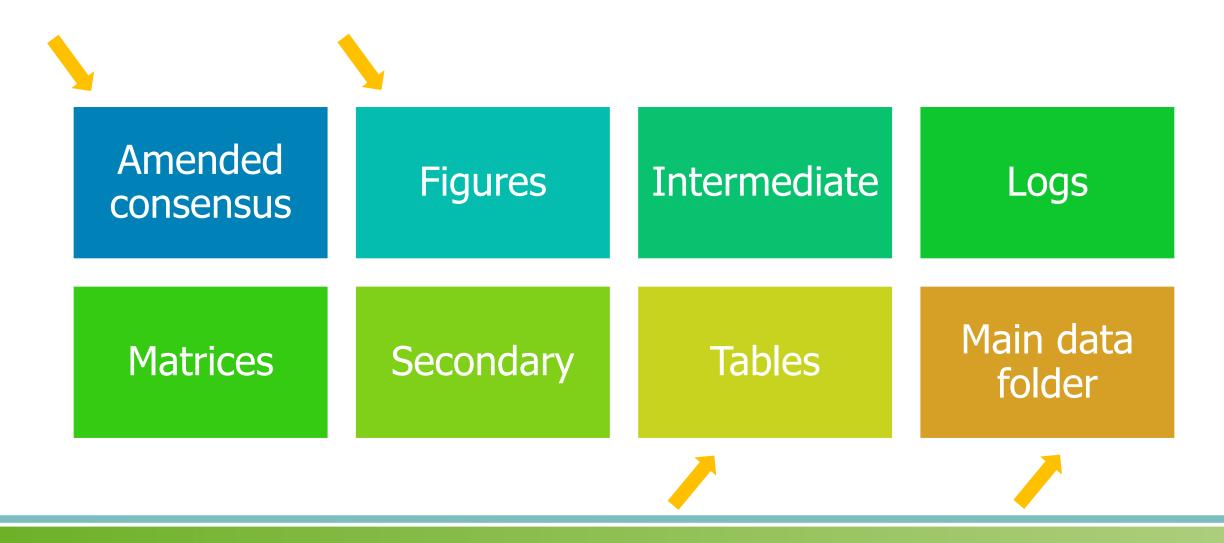
Easy peasy!

Calling IRMA requires three components:

- (1) a module argument specifying the organism and an optional run-specific configuration,
- (2) the input fastq data, and
- (3) the output name for the sample.

Note: If more than one fastq are needed per sample, then one needs to concatenate the appropriate read files.

How to run IRMA


Paired-end files:

USAGE:	<pre>IRMA <module-config> <r1.fastq.gz r1.fastq=""> <r2.fastq.gz r2.fastq=""> <sample_name></sample_name></r2.fastq.gz></r1.fastq.gz></module-config></pre>
Example 1:	<pre>IRMA FLU Sample1_R1.fastq.gz Sample1_R2.fastq.gz Sample1</pre>
Example 2:	<pre>IRMA EBOLA Patient1_R1.fastq Patient1_R2.fastq MyPatient</pre>
Example 3:	<pre>IRMA FLU-utr Sample1_R1.fastq.gz Sample1_R2.fastq.gz Sample1WithUTRs</pre>
Single read files:	
USAGE:	<pre>IRMA <module-config> <fastq fastq.gz=""> <sample_name></sample_name></fastq></module-config></pre>
Example 1:	IRMA FLU SingleEndIllumina.fastq.gz MyIlluminaSample
Example 2:	IRMA FLU-pacbio ccs_reads.fastq MyPacBioSample
Example 3:	<pre>IRMA FLU-pgm pgm_reads.fastq MyIonTorrentSample</pre>

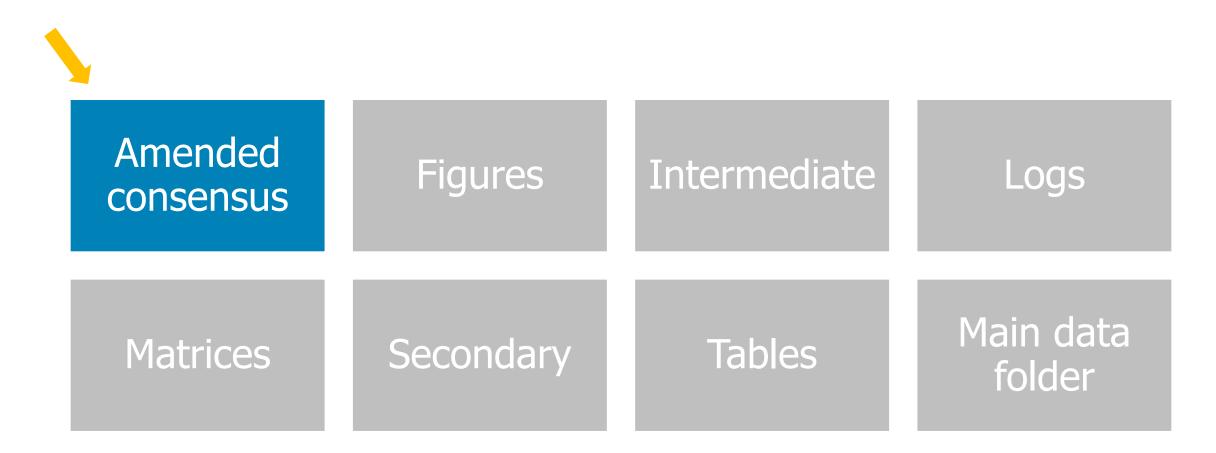
source: https://wonder.cdc.gov/amd/flu/irma/run.html



IRMA outputs



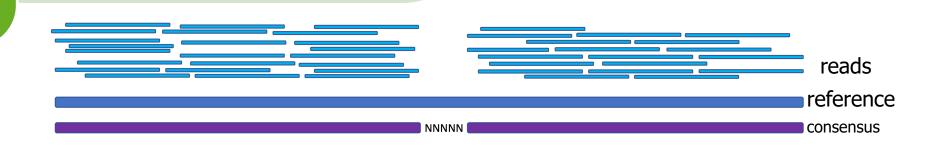
IRMA outputs



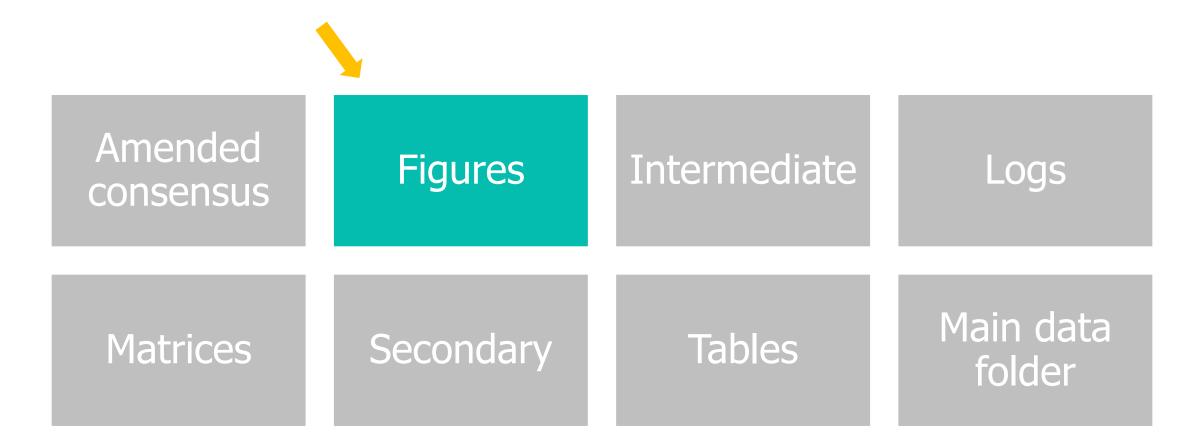
Plurality consensus sequences

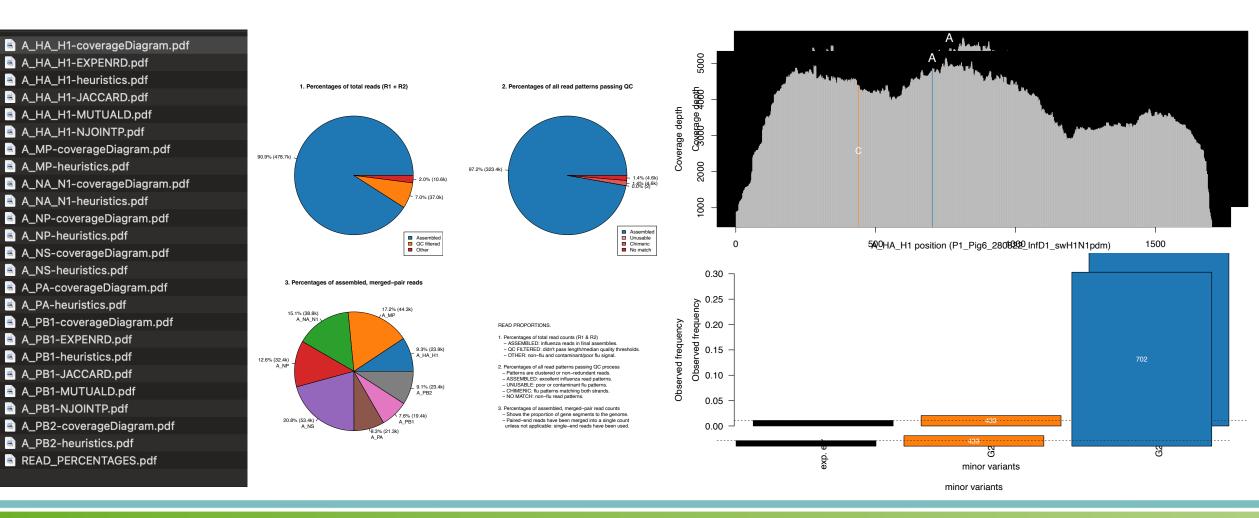
- They are named after the virus genome or gene segment class label that was matched to.
- Useful when used with the BAM file to look at minor variants
- A plurality rule was chosen over majority consensus because it is more inclusive for pattern matching purposes and does not assign strict thresholds for the dominant virus phase in the sample.
- Other parameters are available to restrict the quality of the consensus alleles as part of the amended consensus.

IRMA outputs

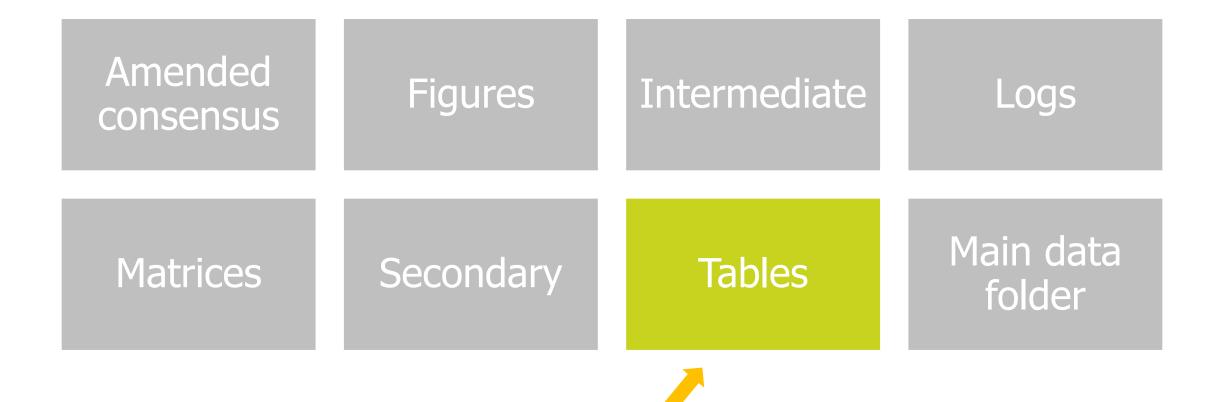

Amended consensus

These sequences are modifications to the plurality consensus. • The first type of amendment is base ambiguation for mixed alleles.


• The second type of base amendment is for consensus allele quality control.



IRMA outputs


Figures

IRMA outputs

Tables

A_HA_H1-allAlleles.txt A_HA_H1-coverage.txt A_HA_H1-deletions.txt A_HA_H1-insertions.txt A_HA_H1-pairingStats.txt A_HA_H1-variants.txt A_MP-allAlleles.txt A_MP-coverage.txt A_MP-deletions.txt A_MP-insertions.txt A_MP-pairingStats.txt A_MP-variants.txt A_NA_N1-allAlleles.txt A_NA_N1-coverage.txt A_NA_N1-deletions.txt A_NA_N1-insertions.txt A_NA_N1-pairingStats.txt A_NA_N1-variants.txt

A_HA_H1-allAlleles.txt

Reference_Name	Positio	n	Allele	Count	Total	Frequen	су	Average	e_Quality	Confide	nceNotMac	Err	PairedU	3	Quali	tyUB	Allel	e_Type	i i i i i i i i i i i i i i i i i i i
A_HA_H1 1	Α	888	888	1	37.5078	32882882	9	0.99982	2249454188	37	0.025543	01485173	389	0.0071	86983368	856045	Conse		
A_HA_H1 2	Т	890	890	1	37.9820	22471910	1	0.99984	4085325781	.8	0.025521	60514511	.36	0.0071	23654653	317622	Conse	nsus	
A_HA_H1 3	G	891	891	1	38.0347	2368125	7	0.99984	4277530417	7	0.025510	93163822	26	0.0071	11093682	2798	Conse	nsus	
A_HA_H1 4	G	892	892	1	37.6457	39910313	9	0.99982	2804056521	.2	0.025500	27894198	313	0.0071	42426589	93119	Conse	nsus	
A_HA_H1 5	Α	899	899	1			0.99	98123213356	943	0.02542	628735083	67	0.007131	1758052	40175	Conse	nsus		
A_HA_H1 6	т	1	902	0.00110	86474501		38		4263404000		0.025394				33147286		Minor	ity	
A_HA_H1 6	G	901	902		13525498			71698113207			08107568					08704021		Consen	
A_HA_H1 7	G	904	905		50276243			37389380533				0.025363				13862343		Consen	sus
A_HA_H1 7	Α	1	905		49723756		37		2876049531		0.025363				18831067		Minor		
A_HA_H1 8	G	1	922		845986984		36		0407101481		0.025190				31000169		Minor		
A_HA_H1 8	С	921	922	0.99893	154013015			21606948968			577255555		0.025190				98337277		Consensus
A_HA_H1 9	Α	927	927	1		23408845			1262672005		0.025140				31274534		Conse		
A_HA_H1 10	G	1077	1077	1		18839368			7696392381		0.023829				29048253		Conse	nsus	
A_HA_H1 11	C	2	1102		48820326		27	0	0.023641			0.009783			Minor:				
A_HA_H1 11	Ţ	1100	1102	0.99818	351179673			2363636363			119592918		0.023641				94041414		Consensus
A_HA_H1 12	A	1113	1113	1		5498652			0931196206		0.023560				66986929		Conse		
A_HA_H1 13	C	1151	1152		319444444			51954821894				0.023285				67949510	601033	Consen	sus
A_HA_H1 13	A	1	1152		80555555		17	0	0.023285			0.035620			Minor:				
A_HA_H1 14	<u>c</u>	2	1177		92353440		25		0.023118			0.011488			Minor:				
A_HA_H1 14	T	1175	1177		07646559			93617021270			319999044		0.023118				56494379		Consensus
A_HA_H1 15	G	2	1186		863406408		38		1583368705		0.023059				54078773		Minor		
A_HA_H1 15	A	1184	1186		36593591			875 0.99982			0.023059				84767033		Conse		6
A_HA_H1 16	6	1191	1192		510738255			8681780016			951635824		0.023020				45954087		Consensus
A_HA_H1 16	L L	1	1192		89261744		39		3609091413		0.023020				43452314		Minor		C
A_HA_H1 17		1197	1199		319432860			02422723475			358418224		0.022975				47101113	686062	Consensus
A_HA_H1 17		2	1199		80567139		15.5		0.022975			0.045689			Minor:		Minor		
A_HA_H1 18	6	1200	1201		326394671		35		1045301377		0.022962				89503927		Minor		
A_HA_H1 18	A	1200	1201	0.99916	573605328	59	37.8	1 0.9998	3428502282	.3	0.022962	64620029	808	0.0054	09732534	400022	Conse	nsus	

Conclusions

IRMA addresses viral diversity, which is critical for surveillance of rapidly evolving RNA viruses

IRMA can efficiently assemble reads across a range of coverage depths and phased minor variants

IRMA is customizable for different applications and organisms and provides a comprehensive set of analysis outputs

IRMA provides a comprehensive solution that addresses each aspect of NGS assembly, as it applies to RNA virus evolution, in a flexible and robust manner

IRMA has been used successfully to identify low frequency variants.

Acknowledgements

The creation of this training material was commissioned by ECDC to Statens Serum Institut (SSI) with the direct involvement of Marta Maria Ciucani