

Quality assessment Raw read QC

Aims ITOLs

- Understand the relation between read sizes and library preparation
- Overview of read count in relation to sequencing depth and error assessment
- · Insights into overall read quality on the basis of base quality scoring
- Introduction to assessment of base contents.

What matters to quality?

- Read size
- Read count
- Base quality score
- Base contents

Read size

Fragment	A	\rightarrow		← (В	
Insert size						
Unknown sequence						
Read size						
Adapter sequences		-				
Read sequences		\longrightarrow		←		-
	AdptA	-ACGGTCA		CGTCCGA-	AdptB)
	AdptA	@sample1_M -ACGGTCA	Matel			
	AdptB	 @sample1_M -AGCCTGC	Mate2			
		•••				

Scenarios

What library size do you think is aimed for?

Insert size

Read size should correlate with the library strategy

Read count

Read count

Read count

Read counts dictates the sequencing depth.

Pop quiz time!!!

Sequence	Count
ACCTGGCGCCACCGACTGGCATGAACATGGA	96
NNNN	57
ACCTTGGC	48

- Adapter?Biological?Technical?

Sequence	Count
ACCTGGCGCCACCGACTGGCATGAACATGGA	96
NNNN	57
ACCTTGGC	48

- •
- •
- Adapter? Biological? Technical? •

Sequence	Count
ACCTGGCGCCACCGACTGGCATGAACATGGA	96
NNNNN	57
ACCTTGGC	48

- Adapter?Biological?Technical?

Sequence	Count
ACCTGGCGCCACCGACTGGCATGAACATGGA	96
NNNN	57
ACCTTGGC	48

- Adapter?Biological?Technical?

Overrepresented reads indicates issues during library prep or sequencing.

Base quality

Base quality

Base quality

Overall base quality

Overall base quality

What to do with the crappy bases and reads?

What to do with the crappy bases and reads?

Throw it out!!

Base quality and read quality usable to extract highest quality sequencing data.

. . .

. . .

. . .

Base	Count	Percentage
A	49	36.03
С	26	19.12
G	19	13.97
Т	42	30.88

GC contents

S. aureus: ~33.09% E. coli: X%

... Y%

• • •

You survived!

Congratz...

Acknowledgements

The creation of this training material was commissioned by ECDC to Statens Serum Institut with the direct involvement of Kasper Thystrup Karstensen The revision and update of this training material was commissioned by ECDC to Statens Serum Institut with the direct involvement of Kasper Thystrup Karstensen, Astrid Rasmussen, and Søren Hallstrøm

35