
Bridging the gaps in bioinformatics/Getting started in
bioinformatics
Why and how to document your code

Documentation can be done at multiple levels

Top-level: What is this code for? What is the
underlying idea? (README/Wiki)

Middle level: How can I use it? (Usage info, installation
requirements, scope, options)

Deep level: How does the code work? What
is the purpose of each chunk? (Comment
lines and structure)

Why should you care about documentation?

Transparency
• Colleagues using the code will be able to point out issues, if they understand what the code is doing
• Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you

are not aware of

Why should you care about documentation?

Transparency
• Colleagues using the code will be able to point out issues, if they understand what the code is doing
• Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you

are not aware of

Collaboration

• Give your colleagues a chance to contribute and improve on the code

• Give your colleagues a chance to take over from you

Why should you care about documentation?

Transparency
• Colleagues using the code will be able to point out issues, if they understand what the code is doing
• Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you

are not aware of

Collaboration

• Give your colleagues a chance to contribute and improve on the code

• Give your colleagues a chance to take over from you

Reproducility
• This is how we do science!

Why should you care about documentation?
Transparency
• Colleagues using the code will be able to point out issues, if they understand what the code is doing
• Colleagues with other expertise (wetlab, epidemiology etc) may also be able to point out issues you

are not aware of

Collaboration

• Give your colleagues a chance to contribute and improve on the code

• Give your colleagues a chance to take over from you

Reproducility
• This is how we do science!

Helping yourself out
• It is surprisingly easy to forget the details of code you wrote a while ago..

README!

• Format of README file is not fixed.
Content depends on your project

• Start with overview, then go more
detailed further down.

• The worst README is the one that
doesn’t exist!

Update your README file continously while
you develop your code!

Usage information

Well-written code has integrated usage information.

• Something useful should happen if you execute the software without arguments (or with the -h or --
help flag).

Script level documentation
• Keep a clear and logical structure.

• Name your variables properly

• Use comments (#)

Code evolves

You write a script, and all is well. But then:

• There is a bug

• You need another usage option
• Or an additonal script

• There is a dependency that got updated
• Change in wetlab

You write a script, and all is well. But then:
• Turns out that last add-on was a really bad idea. Must be changed. Meanwhile, users should go back to

the original version. Did you save it somewhere?

=> You need version control software

10

Acknowledgements
The creation of this training material was commissioned by ECDC to Statens Serum Institut
(SSI) with the direct involvement of Kirsten Ellegaard

11

