Python Handout

Table of Contents

(80 o Lo 2
Running Python in the COMMANA lINEeeeeeueeeeuneereeenrereeunrereeesserrensseesenssessensssssensssesennnnns 2
SPYACE aaeeeeeeeeeeeeeeiereeueeeereierernsserenesieseenssessssssesssnsssssssssosssnssessssssesssnsssssnsssosssnsssssnnssessnnse 3
100 [o =2 N 3
N 4
COMMENTING.cuuieeiiniiiniireirniiieiieeiiniitesieeisssitnssensssnssssssssssnsssnssnssnns 4
EQUAI/NOT @QUQI.cccceeeeeeeeeeeeeeeeesressssssssseeeeeeeeeeseeeessssssmsssssssssssssssssssssssssssssssssssssssnsnnnnsssssssnns 5
T DS eeeneeeeeereeereeeerenseseeserresereesernssernasssnsssenssensessasasensessssesnssssnassenssnsnssnsnsssensssensessnsesnaseensnnen 5
20T = ¢ I 6
LiSTS ereruuunsienrrennnnssinnnemnnnssiinnsnmnmmssiinnsemmmssssiesssenssssssessssnssssssssssssssssssssssssssssssssssssnssssssssssnnnsss 6
INAEXING 1vvverreerenereerenneerenureereeueserenssseseensserensssessenssossssssossenssesssnssessenssssssnssssssnssssssnssssssnnsnns 7
SHCING evveerrererereereurereeneeeeressereenssesenmsseseenssessssssosssnssessssssosssnsssssnsssesssnsssssnsssosssnsssssnnsssssnnse 7
[f SEQLEMENTLS «.eveeereerennneerenenierennererenesseseensserensssessensesessssosssnssssssnssessenssssssnssssssnssssssnssssssnnsnne 8
FOT IOOPS «eveueeeereneeerennneerenuniesenneeesenssieseenssesensssessensssssssssessenssssssnssesssnssssssnsssssenssssssnsssssnnsnns 9
COUNTING.cteriiniireiieiiniieiiniieiiseiinsitesisessssstnssrssssssssssssssssssnsssssssssssssssssssssssssnsssnssssssnsssnssnnns 10
File RANAIING iN PYERON «.......eeeeeeeeveeereerereeeererenieeeeneiereressessensesesnsssssenssesssnssossenssssssnssssennes 11
BIOPYERON.ceeeneeeeeeeeereeeeereunnserenesiesesussesesessesssnssesessssossenssesssnssssssnssssssnssssssnssssssnssssssnnes 12
SYSLEM AIrGUMENLESc..ceuveniriiieiieiiriiiiiiieiiiesirisseeiissernsssesssssrnsssnssesssssesnssssssssssnssssssssssnsssns 12
WHRIIE [OOP ceeeuereeeereereueeereeuereereuneerenaeerennsserensssesessssesesassesssnsssssssssssssnssssssnsssssenssssssnsssssennes 13
LT T ot [T L 14
[0 et 1o T2 Lo T = 14

Conda

Conda is a package and environment management system. With it, you can load an
environment with specific versions of certain programs and packages. That way, you always
have a clean environment and avoid issues with different programs wanting different
versions of the same package.

Creating an environment is easy. We have already made one for you with Biopython, but you
can see how easy it is below.

To create an environment named ‘MyEnv’ with Python version 3.6:

$ conda create -n MyEnv python=3.6

To activate the environment:

$ conda activate MyEnv

To deactivate the environment when finished:

$ conda deactivate MyEnv

Running Python in the command line
Running a Python script through the command line is like running a bash script. You can add
a shebang line in the first line of the script so the interpreter knows how to read it:

#!/usr/bin/env python3

Or you can run it using the Python command:

$ python myfirst.py

In this module, we will run the scripts using the IDE (Integrated development environment)
called Spyder, from where any python script can be directly executed without needing a
command line or shebangs.

Note: Python scripts have the extension ‘“.py’.

Spyder

The Spyder interface has three main panes:

Pane 1: The Editor pane provides a robust code editing environment with features
like syntax highlighting.

Pane 2: The Variable Explorer pane provides a comprehensive overview of the
assigned variables, allowing you to inspect their values, types, and dimensions.
Pane 3: The IPython Console pane allows you to interactively run Python code, view
output, and access a rich set of debugging and profiling tools.

The toolbar in the Spyder interface also has three handy buttons:

Button 1: The New File button creates a new script or file

Button 2: The Run button executes the current script, allowing you to run your code
and observe the output.

Button 3: The Run button executes the current selection, allowing you to run chunks
of your code and observe the output.

.4

X temp.py X untitled0.py Nama Type Size

Created on Fri May 12 21:06:43 2023

@author: gitteaasbjerg

Help Variable Explorer Plots Files

0 x Console 1/A L]

In [1]:

IPython Console History
conda: base (Python 3.10.9) <, Completions: conda(base) v LSP:Python Line9,Col1 UTF-8 LF RW Mem 53%

Variables

Variables are containers used to store data and give them a name. Variables can hold various
types of data, such as numbers, strings, or even more complex structures like lists. By using
variables, you can perform computations, store user input, or represent information in a
flexible and dynamic manner, enhancing the functionality and versatility of your Python
programs.

44

You assign variables in Python using ‘=":

"The variable VarA now contains a string"

= 300

Note: when assigning strings to variables, you can use single or double quotes; it will
ultimately have the same result. Variables are case-sensitive, so the variable varA differs
from VarA. If you assign a new value to an existing variable, it will be overwritten.

You must define variables in the script before using them in a command. You can see all
assigned variables in pane 2 (variable explorer). If you have not executed your script, the
variables you have assigned in the scripts will not be displayed in the variable explorer.

Print

The print() statement in Python is a useful tool for displaying output to the console. Itis a
fundamental command that helps you observe and understand what is happening in your
program at different stages of execution. It allows you to easily show text, variables, or
expressions on the screen while your program is running. By using the print statement, you
can debug your code, track the values of variables, and communicate information to the
user.

Printing in Python is simple:

print("This is a printout")

excuse = "My boyfriend ate my dog, so, I couldn’t join the meeting."
print(excuse)

A = "Vodka"
B = "Cake"
print("Is",A,"and",B,"good for you?")

print("Is"+A+"and"+B+"good for you?")

Note: by default, separating the input of a print statement with a comma will add space
between each input, whereas plus will not.

Commenting
If you want to add a comment in Python, it is like bash, where you use ‘#'.

print("This is not a comment™)

You can also comment out multiple lines of code. This is especially useful for code chunks
you do not need to run now. To start and end a multi-line comment, use """ (triple quotes).

This code that is ignored
print(“This statement isn’t going to happen”)

print("This will be printed, and is not commented out")

Equal/not equal

The comparison operator “=="is used check whether one thing is equal to another. Not to
get it confused with the “=" which is used to assign variables. Below is a table with other
comparison operators:

Meaning Operator
Equal ==
Not equal I=
Greater than

Less than

Greater than or equal to >=
Less than or equal to <=

Types
Python has several built-in data types that are fundamental for storing and manipulating
different kinds of data. Some common data types in Python include:

1. Integers (int): Used to represent whole numbers without decimal points.

2. Floating-Point Numbers (float): Used to represent numbers with decimal points or
fractional values and is accurate up to 15 decimals.

3. Strings (str): Used to represent sequences of characters, such as text or words,
enclosed in single or double quotes.

4. Booleans (bool): Used to represent either True or False values, which are essential
for logical operations and decision-making.

5. Lists: Used to store collections of items, which can be of different data types, and can
be modified (mutable).

6. Tuples: Similar to lists, but they are immutable, meaning their elements cannot be
changed once defined.

7. Dictionaries: Used to store key-value pairs, allowing you to retrieve values based on
their associated keys.

8. Sets: Used to store unique elements in an unordered manner, providing operations
like union, intersection, and difference.

the type() function is used to determine the type or class of an object. It returns the class or
type of the object as a result. Here are some examples:

4

type(3)
type(3.0)
type("True™)
type(True)

Python provides several functions to convert one type to another, such as int(), float(), str(),
list(), tuple(), dict(), and bool(). Here are some examples:

JdE))

float(3)

int(3.0)

Boolean

A Boolean is a data type with two values: True and False. Booleans are used for logical
operations and decision-making. You can create Boolean expressions using comparison
operators like == and logical operators like and, or, and not. Here are some examples:

as> 2

(1 =2
a<2

(1=2and 1 < 2)
1=20r1<2)
(not(1 > 2))

Lists

A list is a versatile and commonly used data structure that allows you to store collections of
items. It is created by enclosing comma-separated values or objects within square brackets
‘[T. Lists can contain elements of different types, such as integers, strings, or even other
lists. You assign a list as you assign variables, with an ‘=". Use proper names when assigning a
list, and don’t call a list for ‘list’. Here are some examples:

activities = ["hiking", "biking", "drinking", "murdering"]

mixed = [1, 1.0, ["list", "inside", "list"], True]

Python includes built-in methods to perform various operations on lists, such as append(),
insert(), remove(), sort(), reverse(), len(), and more. Here are a few examples:

activities.append("baking")
print(activities)

activities.remove("murdering™)
print(activities)

lenCactivities)

Indexing

Elements within a data structure, such as lists, are accessed using zero-based indexing. Zero-
based indexing means that the first element in a list is at index 0, the second element is at
index 1, and so on. You can use square brackets [] and the index of the element to retrieve
its value. Here are some examples:

activities = ["hiking", "biking", "drinking", "murdering"]

activities[@]
activities[2]

Lists are mutable, meaning you can change the value of individual elements by assigning
new values to specific indices:

activities[3] = "baking"

print(activities)

Slicing

Slicing is a way to extract a portion of a list, string, or other sequence-like objects. It allows
you to create a new sequence containing a subset of elements from the original sequence.
In the table below, start specifies the starting index of a slice, and stop the ending element
of a slice.

Slicing command Effect

Object[start:stop] Items from start to stop -1

Object[start:] Everything from the start

Object[:stop] Everything from beginning to stop -1
7

4

Object[:] Everything
Object[-2:] Last two items in the object
Object[:-2] Everything besides the last two items

Here are some examples:

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

my_list[2:5]

my_list[3:]

my_list[:6]

If statements

If statements are used to add conditional execution of a statement. Such that, only if specific
requirements are met will the code be executed. A simple if statement is shown below:

if <expression>:
<statementl>
<statement2>

<statement3>

Only if <expression> is TRUE will <statement1> and <statement2> run; note that
<statement3> will run regardless of <expression> being TRUE. That is because <statement1>
and <statement2> have an indentation that indicates that it is part of the if statement. Note
the “’ after <expression> to indicate the start of the if statement.

Unlike bash, there is no direct indication of the end of the if statement. The end of the if
statement is indicated by the first new line without indentation compared with the
beginning of the if statement. Here is an example:

if x > 69:
print("I guess X is bigger than 69!")
print("Damm..", x, "that’s big!™")

print("0Oh no, it’s the end of the example")

Like bash, python also allows you to add an else statement, which only triggers if the ‘if
condition’ is FALSE, or in other words, if ‘if <expression>’ is not TRUE.

4

You can also add more than two outcomes by adding an elif statement (else if). In the
example below, you can see the general if statement with an additional elif and else
statement. First, <expression1> is evaluated; if TRUE, <statement1> is executed; if not, then
<expression2> is evaluated. If <expression2> is TRUE, then <statement2> is executed; if
FALSE, then <statement3> in the else statement is executed instead. <statement4> is
executed regardless of the outcome of the if/elif/else statements.

if <expressionl>:
<statementl>
elif <expressionZ>:
<statement2>
else:
<statement3>
<statement4>

Making an accurate if statements can be tricky. Using the correct order of expressions along
with the right comparison operators are a requirement to an accurate output. Here are
some general examples and some pitfalls:

if X < 20:

print(X, "is smaller than 20")
elif X < 10:

print(X, "is smaller than 10")
else:

print(X, "is bigger than 20")

1) The first expression (if) is True as 15 is indeed smaller than 20. Lucky.

2) The first expression (if) is also True as 5 is indeed smaller than 20. However, the
second expression (elif) would have been more fitting, but the elif expression is never
reached as the first if expression is True. Here, changing the order of the first two
expressions would make a more correct outcome.

3) Neither the first expression (if) nor the second (elif) is True — thus the last expression
(else) is run. However, this statement is not correct either. Using different
comparison operators would make a more accurate outcome.

For loops

For loops in Python are used to iterate over a sequence of elements, such as a list, string, or
range of numbers, executing a block of code for each element in the sequence. The loop
iterates over each item one by one, allowing you to perform repetitive tasks or operations
on them. A simple for loop is shown below:

for <var> in <iterable>:
<statement(s)>
9

The <statement(s)> will be executed for each item in <iterable>. Here <iterable> is the
collection of objects, such as a list. <var> is a loop variable; it takes the value of the current
item in <iterable> and will take the value of the next item in <iterable> each time it goes
through the loop. The loop ends when all elements in <iterable> have gone through the
statement. The <statement(s)> are in the loop body because of the indentation as with jf
statements; the indentation is essential to note what is part of the loop.

Note that you can call <var> whatever you like. It will always have the value of an item in the
loop. Here is an example:

list_activities = ["hiking", "murdering ", "drinking"]

for activity in list_activities:
print(activity,"is a wholesome activity!™)

The break statement is used to exit or terminate a loop prematurely. It is primarily used
within for loops and while loops to interrupt the loop's execution before it reaches its normal
end. Here is an example:

for activity in list_activities:
if activity == "murdering":
print("Mate.. No")
print("I.. Gotta go")
break

print("Let’s go", activity)

Note: the loop was terminated before iterating over "drinking".

Counting

You can use a counting variable to count how many times you go through a loop. Set
“counter = 0” before a loop and add “counter += 1” inside the loop; this will add 1 to
“counter” every time you go through the loop. You can also use -= 1. This is the opposite of
+=and subtracts 1 for every iteration through the loop. Here is an example:

10

counter = 0

for stuff in list_activities:
print(“Should we go”, stuff, “today?”)
counter += 1
print(“We have”, counter, “options of activities today”)

File handling in Python

File handling in Python involves working with files to read or write data. Python provides a
set of functions and methods that make it easy to handle files. To open a file, you can use
the open() function. It takes the file path and the mode as parameters. The mode specifies
whether you want to read, write, or append to the file:

open("example.txt", "r")
open("example.txt", "w")
= open("example.txt", "a")

To write data to a file, open the file in write mode ("w") or append mode ("a"), and then use
the write() method to add content:

file = open("example.txt", "w")

file.write("Overwriting the file!™)
file.close()

11

Biopython

Biopython is the largest and most popular bioinformatics package for Python. It contains
several different sub-modules for everyday bioinformatics tasks. Biopython provides an easy
way to parse FASTA files and extract sequence data. You can use the SeqlO.parse() function
to read the FASTA file and iterate over its sequences. Here is an example:

from Bio import SeqIO
from Bio.Seq import Seq

filename = "path/to/file/sequences.fasta"

sequences = Seql0.parse(filename, "fasta")

for sequence in sequences:
print("ID:", sequence.id)
print("Sequence:", sequence.seq)
print("Length:", len(sequence))

System arguments

System arguments allow you to pass input values or parameters to a script or program
directly from the command line. The arguments are passed as strings and can be accessed
within your Python script. To work with system arguments, you need to import the sys
module, which provides access to system-specific parameters and functions. Consider this
example — let’s call the script example.py:

Import sys

argl = sys.argv[1]
arg2 = sys.argv[Z2]
arg3 = sys.argv[3]

print("Argument 1:", argl)
print("Argument 2:", arg2)
print("Argument 3:", arg3)

Executing the script in the command line will give the following output:
$ python example.py duck duck goose
Argument 1: duck

Argument 2: duck
Argument 3: goose

While loop

A for loop is a defined iteration, but a while loop might be preferred if you do not know how
many iterations you need. A while loop is an indefinite iteration that stops when a given
condition stops being TRUE.

while <expression>:
<statement(s)>

As with for loops and if statements, indentation is critical, and you can see that the
<statement(s)> is part of the loop because it has an indentation. The <statement(s)> will run
until the condition in <expression> is False. The <expression> usually involves one or more
variables defined before the loop, which is then modified as you go through the loop. The
while loop stops when the variables change, so the condition becomes False.

cakes = 2

while cakes > @

cake -= 1

print("Kasper ate a cake")
print("Kasper ate all the cakes™)

For every iteration of the loop, Kasper will have eaten one cake. This while loop stops when
“cake” has the value of 0. The variable in the <expression> must be a variable that changes
through the loop and has the potential to make the condition False; if not, the while loop
will continue at infinite.

The built-in function len() which finds the length of an object, such as number of characters
in a string or elements in a list. This versatile function has many uses, including when you

1=0

list_activities = ["hiking", "murdering ", "drinking "]

while i1 < len(list_activities):
print(list_activities[i])
i+=1

need a maximum, either when finding a range for slicing or iterating through a list using a
while loop.

13

4

Functions

Functions are a fundamental concept that allows you to organize and reuse code efficiently.
A function is a block of code that performs a specific task and can be called multiple times
throughout your program. It takes input arguments (optional) and can return a value
(optional) as a result.

def greet(name):
print("Hello, " + name + "!")

greet("Kasper™)

Functions can also return values using the return statement. Here's an example:

def add_numbers(a, b):
return a + b

VarA = add_numbers(1,2)
Print(VarA)

Dictionaries

A dictionary is a powerful data structure that allows you to store and retrieve data using key-
value pairs. It is also known as an associative array or a hash map in other programming
languages. A single key can be associated by multiple values if values are assigned as lists.
Here is an example:

Creating a dictionary of lists
activities = {"yes": ["hike"], "no": ["murder"]}

Adding a new value to the 1list of values
activities["yes"].append("sing™)
print(activities["yes"])

Output: ['hike', 'sing']

Adding a new key and value (value is not a list, so appending is not
possible)

activities["maybe"] = "sleep"
print(activities)

Output: {'yes': ['hike', 'sing'],

14

no': [‘murder'], 'maybe’ : 'sleep'}

Accessing a specific value from the 1list of values
first_activity = activities["yes"][@]
print(first_activity)

Output: 'hiking'

