
 

 1 

Python Handout 

Table of Contents 

Conda ................................................................................................................................ 2 

Running Python in the command line ................................................................................ 2 

Spyder ............................................................................................................................... 3 

Variables ........................................................................................................................... 3 

Print .................................................................................................................................. 4 

Commen9ng ...................................................................................................................... 4 

Equal/not equal ................................................................................................................. 5 

Types ................................................................................................................................. 5 

Boolean ............................................................................................................................. 6 

Lists ................................................................................................................................... 6 

Indexing ............................................................................................................................ 7 

Slicing ............................................................................................................................... 7 

If statements ..................................................................................................................... 8 

For loops ........................................................................................................................... 9 

Coun9ng .......................................................................................................................... 10 

File handling in Python .................................................................................................... 11 

Biopython ........................................................................................................................ 12 

System arguments ........................................................................................................... 12 

While loop ....................................................................................................................... 13 

FuncBons ......................................................................................................................... 14 

DicBonaries ..................................................................................................................... 14 
 
 
  



 

 2 

Conda 
Conda is a package and environment management system. With it, you can load an 
environment with specific versions of certain programs and packages. That way, you always 
have a clean environment and avoid issues with different programs wan@ng different 
versions of the same package.  
  
Crea@ng an environment is easy. We have already made one for you with Biopython, but you 
can see how easy it is below.  
  
To create an environment named ‘MyEnv’ with Python version 3.6: 

  
To ac@vate the environment: 

  
To deac@vate the environment when finished: 

Running Python in the command line 
Running a Python script through the command line is like running a bash script. You can add 
a shebang line in the first line of the script so the interpreter knows how to read it: 

  
Or you can run it using the Python command: 

  
In this module, we will run the scripts using the IDE (Integrated development environment) 
called Spyder, from where any python script can be directly executed without needing a 
command line or shebangs.  
  
Note: Python scripts have the extension ‘.py’.   
  

$ conda create -n MyEnv python=3.6      Unix 

$ conda activate MyEnv        Unix 

$ conda deactivate MyEnv       Unix 

#!/usr/bin/env python3        Python 

$ python myfirst.py        Unix 



 

 3 

Spyder 
The Spyder interface has three main panes: 

• Pane 1: The Editor pane provides a robust code edi@ng environment with features 
like syntax highligh@ng. 

• Pane 2: The Variable Explorer pane provides a comprehensive overview of the 
assigned variables, allowing you to inspect their values, types, and dimensions. 

• Pane 3: The IPython Console pane allows you to interac@vely run Python code, view 
output, and access a rich set of debugging and profiling tools. 

 
The toolbar in the Spyder interface also has three handy buVons: 

• BuVon 1: The New File buVon creates a new script or file 
• BuVon 2: The Run buVon executes the current script, allowing you to run your code 

and observe the output. 
• BuVon 3: The Run buVon executes the current selec@on, allowing you to run chunks 

of your code and observe the output. 
 
 

 
 

Variables 
Variables are containers used to store data and give them a name. Variables can hold various 
types of data, such as numbers, strings, or even more complex structures like lists. By using 
variables, you can perform computa@ons, store user input, or represent informa@on in a 
flexible and dynamic manner, enhancing the func@onality and versa@lity of your Python 
programs.  
 

 
 

1 

   

 
2 

 
3 

 
 

1 2 3 



 

 4 

You assign variables in Python using ‘=’: 

Note: when assigning strings to variables, you can use single or double quotes; it will 
ul@mately have the same result. Variables are case-sensi@ve, so the variable varA differs 
from VarA. If you assign a new value to an exis@ng variable, it will be overwriVen.  
 
You must define variables in the script before using them in a command. You can see all 
assigned variables in pane 2 (variable explorer). If you have not executed your script, the 
variables you have assigned in the scripts will not be displayed in the variable explorer.  

Print 
The print() statement in Python is a useful tool for displaying output to the console. It is a 
fundamental command that helps you observe and understand what is happening in your 
program at different stages of execu@on. It allows you to easily show text, variables, or 
expressions on the screen while your program is running. By using the print statement, you 
can debug your code, track the values of variables, and communicate informa@on to the 
user.  
 
Prin@ng in Python is simple: 

Note: by default, separa@ng the input of a print statement with a comma will add space 
between each input, whereas plus will not. 

Commen9ng 
If you want to add a comment in Python, it is like bash, where you use ‘#’. 
# This is a comment that will not run     python 
print("This is not a comment")  
# you can write anything you want here; it is not executable 
 
output: This is not a comment 

print("This is a printout")       python 
output: This is a printout 
 
excuse = "My boyfriend ate my dog, so, I couldn’t join the meeting." 
print(excuse) 
output: My boyfriend ate my dog, so, I couldn’t join the meeting. 
 
A = "Vodka" 
B = "Cake" 
print("Is",A,"and",B,"good for you?")      
output: Is Vodka and Cake good for you? 
 
print("Is"+A+"and"+B+"good for you?")      
output: IsVodkaandCakegood for you? 
 

VarA = "The variable VarA now contains a string"   python 
VarB = 300 



 

 5 

You can also comment out mul@ple lines of code. This is especially useful for code chunks 
you do not need to run now. To start and end a mul@-line comment, use """ (triple quotes). 

Equal/not equal 
The comparison operator “==” is used check whether one thing is equal to another. Not to 
get it confused with the “=” which is used to assign variables. Below is a table with other 
comparison operators: 
  

Meaning Operator 
Equal == 
Not equal != 
Greater than >  
Less than <  
Greater than or equal to >= 
Less than or equal to <= 

  

Types 
Python has several built-in data types that are fundamental for storing and manipula@ng 
different kinds of data. Some common data types in Python include: 
 

1. Integers (int): Used to represent whole numbers without decimal points. 
2. Floa@ng-Point Numbers (float): Used to represent numbers with decimal points or 

frac@onal values and is accurate up to 15 decimals. 
3. Strings (str): Used to represent sequences of characters, such as text or words, 

enclosed in single or double quotes. 
4. Booleans (bool): Used to represent either True or False values, which are essen@al 

for logical opera@ons and decision-making. 
5. Lists: Used to store collec@ons of items, which can be of different data types, and can 

be modified (mutable). 
6. Tuples: Similar to lists, but they are immutable, meaning their elements cannot be 

changed once defined. 
7. Dic@onaries: Used to store key-value pairs, allowing you to retrieve values based on 

their associated keys. 
8. Sets: Used to store unique elements in an unordered manner, providing opera@ons 

like union, intersec@on, and difference. 
 
the type() func@on is used to determine the type or class of an object. It returns the class or 
type of the object as a result. Here are some examples: 

"""           python 
This code that is ignored 
print(“This statement isn’t going to happen”) 
""" 
print("This will be printed, and is not commented out") 
 
output: This will be printed, and is not commented out 



 

 6 

 
Python provides several func@ons to convert one type to another, such as int(), float(), str(), 
list(), tuple(), dict(), and bool(). Here are some examples: 

Boolean 
A Boolean is a data type with two values: True and False. Booleans are used for logical 
opera@ons and decision-making. You can create Boolean expressions using comparison 
operators like == and logical operators like and, or, and not. Here are some examples: 

Lists 
A list is a versa@le and commonly used data structure that allows you to store collec@ons of 
items. It is created by enclosing comma-separated values or objects within square brackets  
‘[ ]’. Lists can contain elements of different types, such as integers, strings, or even other 
lists. You assign a list as you assign variables, with an ‘=’. Use proper names when assigning a 
list, and don’t call a list for ‘list’. Here are some examples:  

 

type(3)   output: int       python 
type(3.0)  output: float 
type("True") output: str 
type(True)  output: bool 

# Convert to str         python 
str(3) output: "3"  
 
# Convert to float 
float(3) output: 3.0  
 
# Convert to int 
int(3.0) output: 3 

# Boolean Expression and Output      python 
(1 > 2)    # output: False 
(1 == 2)    # output: False 
(1 < 2)     # output: True 
 
# Logical Operators: 
(1 == 2 and 1 < 2) # output: False 
(1 == 2 or 1 < 2)  # output: True 
(not(1 > 2))       # output: True 

# Create list containing five strings     python 
activities = ["hiking", "biking", "drinking", "murdering"] 
 
# Create list containing multiple element types 
mixed = [1, 1.0, ["list", "inside", "list"], True] 



 

 7 

Python includes built-in methods to perform various opera@ons on lists, such as append(), 
insert(), remove(), sort(), reverse(), len(), and more. Here are a few examples: 

Indexing 
Elements within a data structure, such as lists, are accessed using zero-based indexing. Zero-
based indexing means that the first element in a list is at index 0, the second element is at 
index 1, and so on. You can use square brackets [ ] and the index of the element to retrieve 
its value. Here are some examples: 

 
Lists are mutable, meaning you can change the value of individual elements by assigning 
new values to specific indices: 

 

Slicing 
Slicing is a way to extract a por@on of a list, string, or other sequence-like objects. It allows 
you to create a new sequence containing a subset of elements from the original sequence.  
In the table below, start specifies the star:ng index of a slice, and stop the ending element 
of a slice.  
  

Slicing command Effect 
Object[start:stop] Items from start to stop -1 
Object[start:] Everything from the start 
Object[:stop] Everything from beginning to stop -1 

# Create list         python 
activities = ["hiking", "biking", "drinking", "murdering"] 
 
# access elements in list 
activities[0]    # Output: hiking 
activities[2]    # Output: drinking 

# change element in list       python 
activities[3] = "baking"      
print(activities)     
output: ["hiking", "biking", "drinking", "baking"] 

# Append element to list 
activities.append("baking") 
print(activities)                
# output: ["hiking", "biking", "drinking", "murdering", "baking"] 
 
# Remove element from list 
activities.remove("murdering") 
print(activities)                
# output: ["hiking", "biking", "drinking", "baking"] 
 
# Find length of list 
len(activities) 
# output: 4 



 

 8 

Object[:] Everything 
Object[-2:] Last two items in the object 
Object[:-2] Everything besides the last two items 

  
Here are some examples: 

If statements 
If statements are used to add condi@onal execu@on of a statement. Such that, only if specific 
requirements are met will the code be executed. A simple if statement is shown below: 

  
Only if <expression> is TRUE will <statement1> and <statement2> run; note that 
<statement3> will run regardless of <expression> being TRUE. That is because <statement1> 
and <statement2> have an indenta@on that indicates that it is part of the if statement. Note 
the ‘:’ arer <expression> to indicate the start of the if statement. 
  
Unlike bash, there is no direct indica@on of the end of the if statement. The end of the if 
statement is indicated by the first new line without indenta@on compared with the 
beginning of the if statement. Here is an example: 

  
Like bash, python also allows you to add an else statement, which only triggers if the ‘if 
condi@on’ is FALSE, or in other words, if ‘if <expression>’ is not TRUE.  
 

# Start of if statement        python 
if x > 69:           

print("I guess X is bigger than 69!") 
print("Damm…", x, "that’s big!") 
# the indentation stops here and so does the if statement 

print("Oh no, it’s the end of the example") 

# if <expression> is TRUE: run <statement1> & <statement2>  python 
if <expression>:          

<statement1> 
<statement2> 

<statement3> 

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 
# Extract a slice from index 2 to 5 (exclusive) 
my_list[2:5] # output: [3, 4, 5] 
 
# Extract a slice from index 3 to the end (exclusive) 
my_list[3:]  # output: [4, 5, 6, 7, 8, 9, 10] 
 
# Extract a slice from the beginning to index 6 (exclusive) 
my_list[:6]  # output: [1, 2, 3, 4, 5, 6] 



 

 9 

You can also add more than two outcomes by adding an elif statement (else if). In the 
example below, you can see the general if statement with an addi@onal elif and else 
statement. First, <expression1> is evaluated; if TRUE, <statement1> is executed; if not, then 
<expression2> is evaluated. If <expression2> is TRUE, then <statement2> is executed; if 
FALSE, then <statement3> in the else statement is executed instead. <statement4> is 
executed regardless of the outcome of the if/elif/else statements. 

 
Making an accurate if statements can be tricky. Using the correct order of expressions along 
with the right comparison operators are a requirement to an accurate output. Here are 
some general examples and some pitalls: 

1) The first expression (if) is True as 15 is indeed smaller than 20. Lucky. 
2) The first expression (if) is also True as 5 is indeed smaller than 20. However, the 

second expression (elif) would have been more fiung, but the elif expression is never 
reached as the first if expression is True. Here, changing the order of the first two 
expressions would make a more correct outcome. 

3) Neither the first expression (if) nor the second (elif) is True – thus the last expression 
(else) is run. However, this statement is not correct either. Using different 
comparison operators would make a more accurate outcome.  

For loops 
For loops in Python are used to iterate over a sequence of elements, such as a list, string, or 
range of numbers, execu@ng a block of code for each element in the sequence. The loop 
iterates over each item one by one, allowing you to perform repe@@ve tasks or opera@ons 
on them. A simple for loop is shown below: 

 

for <var> in <iterable>:       python  
<statement(s)> 

if <expression1>:         python 
<statement1> 

elif <expression2>: 
<statement2> 

else: 
<statement3> 

<statement4> 

# Initiate if statement        python 
if X < 20:        

print(X, "is smaller than 20") 
elif X < 10: 

print(X, "is smaller than 10") 
else: 

print(X, "is bigger than 20") 
 

1) input: X = 15  output: 15 is smaller than 20 
2) input: X = 5  output: 5 is smaller than 20 
3) input: X = 20  output: 20 is bigger than 20 

 



 

 10 

The <statement(s)> will be executed for each item in <iterable>. Here <iterable> is the 
collec@on of objects, such as a list. <var> is a loop variable; it takes the value of the current 
item in <iterable> and will take the value of the next item in <iterable> each @me it goes 
through the loop. The loop ends when all elements in <iterable> have gone through the 
statement. The <statement(s)> are in the loop body because of the indenta@on as with if 
statements; the indenta@on is essen@al to note what is part of the loop.  
Note that you can call <var> whatever you like. It will always have the value of an item in the 
loop. Here is an example: 

 
The break statement is used to exit or terminate a loop prematurely. It is primarily used 
within for loops and while loops to interrupt the loop's execu@on before it reaches its normal 
end. Here is an example:  

Note: the loop was terminated before itera@ng over "drinking". 

Coun9ng  
You can use a coun@ng variable to count how many @mes you go through a loop. Set 
“counter = 0” before a loop and add “counter += 1” inside the loop; this will add 1 to 
“counter” every @me you go through the loop. You can also use -= 1. This is the opposite of 
+= and subtracts 1 for every itera@on through the loop. Here is an example:  
 

# Iterate through every item in list_activities    python 
for activity in list_activities:       
 if activity == "murdering": 
  print("Mate… No") 
  print("I… Gotta go") 
  break 
 else: 
  print("Let’s go", activity) 
 
output: Let’s go hiking 
  Mate… No 
  I… Gotta go 

# Create list         python 
list_activities = ["hiking ", "murdering ", "drinking"]     
 
# Iterate through every item in list_activities 
for activity in list_activities:       
 print(activity,"is a wholesome activity!") 
 
output:  hiking is wholesome activity 

murdering is a wholesome activity 
drinking is a wholesome activity 



 

 11 

 

File handling in Python 
File handling in Python involves working with files to read or write data. Python provides a 
set of func@ons and methods that make it easy to handle files. To open a file, you can use 
the open() func@on. It takes the file path and the mode as parameters. The mode specifies 
whether you want to read, write, or append to the file: 

 
To write data to a file, open the file in write mode ("w") or append mode ("a"), and then use 
the write() method to add content: 

# initiate counter        python 
counter = 0           
 
# Iterate through every item in list_activities  
for stuff in list_activities: 
 print(“Should we go”, stuff, “today?”) 
 counter += 1 # add 1 for every iteration 
print(“We have”, counter, “options of activities today”) 
 
output:  should we go hiking today? 
  Should we go murdering today? 
  Should we go drinking today? 
  We have 3 options of activities today 

file = open("example.txt", "r")    # read mode    python 
file = open("example.txt", "w")  # write mode  
file = open("example.txt", "a")   # append mode  

file = open("example.txt", "w")  # creates a new file or overwrites the existing 
file.write("Overwriting the file!")  # overwrites the file with the given content 
file.close()       # closes the file after writing 



 

 12 

Biopython  
Biopython is the largest and most popular bioinforma@cs package for Python. It contains 
several different sub-modules for everyday bioinforma@cs tasks. Biopython provides an easy 
way to parse FASTA files and extract sequence data. You can use the SeqIO.parse() func@on 
to read the FASTA file and iterate over its sequences. Here is an example: 

System arguments 
System arguments allow you to pass input values or parameters to a script or program 
directly from the command line. The arguments are passed as strings and can be accessed 
within your Python script. To work with system arguments, you need to import the sys 
module, which provides access to system-specific parameters and func@ons. Consider this 
example – let’s call the script example.py: 

 
Execu@ng the script in the command line will give the following output: 

# Loading required packages           python 
from Bio import SeqIO         
from Bio.Seq import Seq 
 
# Identifying fasta file 
filename = "path/to/file/sequences.fasta" 
 
# Parsing the FASTA file 
sequences = SeqIO.parse(filename, "fasta") 
 
# Iterating over the sequences 
for sequence in sequences: 
    print("ID:", sequence.id)   # print sequence ID 
    print("Sequence:", sequence.seq) # print sequence 
    print("Length:", len(sequence))  # print sequence length 

Import sys          python 
 
# Accessing command-line arguments 
arg1 = sys.argv[1] 
arg2 = sys.argv[2] 
arg3 = sys.argv[3] 
 
# Using the arguments 
print("Argument 1:", arg1) 
print("Argument 2:", arg2) 
print("Argument 3:", arg3) 
 
 

$ python example.py duck duck goose      Unix 
 
Argument 1: duck 
Argument 2: duck 
Argument 3: goose 
 



 

 13 

While loop 
A for loop is a defined itera@on, but a while loop might be preferred if you do not know how 
many itera@ons you need. A while loop is an indefinite itera@on that stops when a given 
condi@on stops being TRUE.  

 
As with for loops and if statements, indenta@on is cri@cal, and you can see that the 
<statement(s)> is part of the loop because it has an indenta@on. The <statement(s)> will run 
un@l the condi@on in <expression> is False. The <expression> usually involves one or more 
variables defined before the loop, which is then modified as you go through the loop. The 
while loop stops when the variables change, so the condi@on becomes False.  

For every itera@on of the loop, Kasper will have eaten one cake. This while loop stops when 
“cake” has the value of 0. The variable in the <expression> must be a variable that changes 
through the loop and has the poten@al to make the condi@on False; if not, the while loop 
will con@nue at infinite.  
 
The built-in func@on len() which finds the length of an object, such as number of characters 
in a string or elements in a list. This versa@le func@on has many uses, including when you 

need a maximum, either when finding a range for slicing or itera@ng through a list using a 
while loop. 

# initiate counter        python 
i = 0  
 
# Create list 
list_activities = ["hiking ", "murdering ", "drinking "]     
           
# Run if counter is smaller than list_activities     
while i < len(list_activities): 
 print(list_activities[i]) 
 i += 1 # add 1 for every iteration 
 
output:  hiking 
  murdering 
  drinking 

# Define number of cakes        python 
cakes = 2 
 
# Run if cake variable is bigger than zero     
while cakes > 0 
 cake -= 1 # subtract 1 for every iteration 
 print("Kasper ate a cake") 
print("Kasper ate all the cakes") 
 
output: Kasper ate a cake 
  Kasper ate a cake 
  Kasper ate all the cakes 

while <expression>:        python 
<statement(s)> 



 

 14 

Func9ons 
Func@ons are a fundamental concept that allows you to organize and reuse code efficiently. 
A func@on is a block of code that performs a specific task and can be called mul@ple @mes 
throughout your program. It takes input arguments (op@onal) and can return a value 
(op@onal) as a result. 

 
Func@ons can also return values using the return statement. Here's an example: 

Dic9onaries 
A dic@onary is a powerful data structure that allows you to store and retrieve data using key-
value pairs. It is also known as an associa@ve array or a hash map in other programming 
languages. A single key can be associated by mul@ple values if values are assigned as lists. 
Here is an example: 

# Creating a dictionary of lists      python 
activities = {"yes": ["hike"], "no": ["murder"]} 
 
# Adding a new value to the list of values 
activities["yes"].append("sing")   
print(activities["yes"])      
Output: ['hike', 'sing'] 
 
# Adding a new key and value (value is not a list, so appending is not 
possible) 
activities["maybe"] = "sleep" 
print(activities)      
Output: {'yes': ['hike','sing'], 'no': ['murder'], 'maybe' : 'sleep'} 
 
# Accessing a specific value from the list of values 
first_activity = activities["yes"][0]  
print(first_activity)      
Output: 'hiking' 

# Creating a function called greet that takes a name parameter python 
def greet(name): 
    print("Hello, " + name + "!") 
 
# Executing function 
greet("Kasper") 
output: Hello, Kasper! 
 

# Creating a function that return values using the return statement 
def add_numbers(a, b): 
    return a + b 
 
# Capture the returned value by assign a variable  
VarA = add_numbers(1,2) 
Print(VarA) 
output: 3 


