

 1

Using nano

If you want to create a script using Nano or edit a script, go on the terminal and write:
nano scriptname.sh

This will open a sh file with the name “scriptname.”
This is a text document where you can write like any other document.

Nano has many funcAons. To perform an opAon, press control and the given leCer
associated with the opAon. Exit is ctrl + X. You can save the script when exiAng.

Comments
If you want to add comments to a script without the script running them as code, add a #.
Everything aIer # will be a comment,

Example:
This and the rest of this line is now a comment

Shebang
A shebang is the character sequence of #! at the beginning of the script. It tells the operaAng
system the path to interpret the file.
If one uses bash, you would have the shebang as well as the path to the bash binary:
#!/bin/bash

Remember: All bash scripts need to start with the above shebang line.

Echo
Echo is a command used to print the output to the terminal.

If you want to print the sentence “Hello World”
You can use the following commands:

echo Hello World
echo ‘Hello World’
echo “Hello World”

Using quotaAons is safer and is the recommended route, especially if the print statement
has quotes.

If you want an empty line, have an echo stand alone:
echo

 2

Running bash scripts
To run a bash script, you can say:
bash scriptname.sh

If you want to make the script executable, run this command on the file:
chmod 755 scriptname.sh

From then on, you can run the script using:
./scriptname.sh

Making files executable makes them easier for automaAon and ensures that you don’t have
to provide an interpreter.

Variable
Variables are a good way of defining values that needs to change between running scripts.
They are also brilliant if you use the same value mulAple Ames in one script. You must assign
the variable before using it; otherwise, the interpreter does not know what to do with the
variable.

Variables can be used to set values but also define directories.

If you want to save the result of a command and store it in a variable:
var=$(command)

This variable can be used in echo. You can thereby print the output of a command:
echo “There are $var sequences”

pet=”polar bear”
edu=astrophysicist
wish=baker
dir=/path/to/dir/

echo “Mia wants another $pet”
output: Mia wants another polar bear

echo “Mia studied to be an $edu but really wanted to be a $wish”
output: Mia studied to be an astrophysicist but really wanted to be a
baker

 3

Posi9onal arguments
Instead of assigning the variable in the script, one can supply the variable in the command
line. You do this by posiAonal arguments.

$1 (first posiAonal argument)
$2 (second posiAonal argument)

Here is an example:

Word count – Only coun9ng lines
As previously learned in the Linux secAon, you can use ‘wc’ to count words and lines. If you
want to count how many sequences there are in a fasta file, combining grep and wc through
pipe | would be good. If you only want to count the lines with the fasta header (marked by
‘>’), then add -l (l for lines) to the wc command:

wc -l

Integer (number) operator
These operators can be used to compare integers (numbers with no decimal). You would use
them in if statements.

Operator Explana8on
-eq is equal to
-ne is not equal to
-gt is greater than
-ge is greater than or equal to
-lt is less than
-le is less than or equal to

If statements
An if statement is a programming condiAonal statement that performs an acAon when
proven true. The general if statement is as below;

If the script scriptname.sh includes the line: Bash
echo “I love $1 but only on $2”

You can supply the positional arguments while executing the script. Linux
./scriptname.sh vegemite Tuesdays
output: I love vegemite, but only on Tuesdays

if [<expression>] bash
then
 <statement>
fi

 4

The <expression> is what it will check and see if it is true.
If true, it will run the <statement> between then and fi.
fi marks the end of the if statement.
Use ‘tab’ to set the indentaAon before the <statement>.

It is essenAal to note the whitespace around the [] brackets.
A white space must exist between if and the first bracket ‘[‘.
There also needs to be a whitespace between the inside of the bracket and the <statement>
on both sides ([<statement>]).

Here is an example:

Elif and else statements
There is also the possibility to add extra if statements; these are called elif (else if). Unlike if
statements, you can have many of these following each other. You can also add an else
statement. This triggers if neither if nor elif is TRUE.

For loops
A loop is an iteraAon statement. It is used to repeat a process unAl a parAcular situaAon is
reached. For for loops specifically, you repeat a process over all items <var> in each list
<iterable>.

if [$1 -lt 12] Bash
then
 echo “We have less than 12 days to Christmas!”
fi

if [<expression1>] Bash
then
 <statement1>
elif [<expression2>]
then
 <statement2>
else
 <statement3>
fi

for <var> in <iterable> Bash
do
 <statement>
done

Example
for filename in /a/path/to/dir/*
do
 echo “I guess $filename is here”
done

 5

Note that you didn’t have to call it filename but could have called it cats or whatever pleases
you. The filename in the for loop can now be used as a variable within the for loop.

For loops ends with a done instead of fi as seen in if statements.

Looping over specific files in directories
If you want to loop over specific files in a dicAonary, specify it in the ‘in <iterable>’ part of
the for loop. Here you would use the wildcard (*) character so that it would find all files of
the specific type.

For example, if you want to loop over txt files in the directory books, use the following
command:

for textfile in /books/*.txt

Arrays and looping over them
An array is like a list of items. You declare an array like you would assign a variable.
You give it a name by using a ‘=’ with no whitespace around it, enclose the array in
parenthesis and type in the strings with quotaAons.

Array=(“string” “string2” “string”)

Using a for loop over an array is the same as usual, with an added ‘@’ to ensure it loops over
all things in the array, not just the first string.

Here is an example:

Declare array Bash
cutePetArray=(“bear” “hippo” “snake” “werewolf”)

for cutiepie in {cutePetArray[@]}
do
 echo “A $cutiepie is a cutiepie!”
done
output: A polar bear is a cutiepie!
 A guinea pig is a cutiepie!
 A snake is a cutiepie!
 A Loch Ness Monster is a cutiepie!

